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Abstract

In this paper the existence of Majorana Bound States (MBS) in four different types of

quasicrystals (QCs) is confirmed through the simulation of the one-dimensional Kitaev

chain model. This model presents a route to physical realisation of Majorana fermions

which have long been theorised, but yet to be observed in nature. The four QC-types

investigated the golden (Fibonacci) ratio QC, silver ratio QC, Thue-Morse QC and the

Plastic ratio QC) present qualitatively different manifestations of quasicrystallinity to

those explored in the literature. Therefore, the consistent appearance of MBS in each

of them leads to the conclusion that MBS are a general feature of QC systems. The

character of the MBS is compared between QC-types using established and original

metrics, which provide the basis for further analysis of amorphous and aperiodic two-

dimensional systems. This analysis uncovers significant complexity, opening the door

to further work on quantifying the fractality of the topological phase transition.
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1 Introduction

Majorana fermions are of current popular interest due, in part, to the promise of utilising their spe-

cific properties for topologically protected quantum computing [1–3]. However, their significance runs

much deeper than this and unifies scientific interest across high-energy particle physics, condensed matter

physics and quantum computing. There are only three types of fermionic particles [4]: Dirac fermions,

with particle-antiparticle asymmetry such as electrons; Weyl fermions, chiral and massless quasiparticles

observed in condensed matter systems; and Majorana fermions [5]. So far Majoranas have not been ob-

served in nature1. For some time it was predicted that neutrinos were a candidate for Majorana fermions

due to their apparent particle-antiparticle symmetry (a distinct property of Majoranas), experimental

evidence of this is yet to be found [7]. Perhaps Majoranas do not exist as elemental particles, but can be

realised as a collective property of condensed matter systems [8–10] – as quasi -particles.

The first proposal for the realisation of Majoranas in condensed matter systems was put forward by

Kitaev in 2001 [11]. This toy model demonstrates Majorana bound states (MBS) could exist localised

at either end of a one-dimensional crystal. This is elaborated on in Sec. 3. Work on the physical

realisation of this model has flourished since then, advancing the model towards a more realistic system

and experimental work on realising such one-dimensional chains [12–16]. From theory and simulation,

the behaviour of MBS in periodic (crystal) systems is well-understood [17]. However, there is less known

about their behaviour in aperiodic systems. There are many kinds of systems which exhibit aperiodicity,

most obviously, completely disordered (random) systems. The focus of this paper is on quasicrystal (QC)

systems, which are a kind of middle-ground between periodicity and disorder – QCs exhibit long-range

order (predictable patterns) but are nonetheless aperiodic.

This paper builds on work done characterising MBS in the Fibonacci QC [18, 19] – a QC defined by

a specific formation rule related to the golden ratio – by asking if the presence of MBS in this specific

QC-type is unique to it, or whether MBS can be realised as a general feature of other QC-types. To this

end, four quite different QC-types are considered: the golden ratio QC, the silver ratio QC, the Thue-

Morse QC, and the Plastic ratio QC. Methods for confirming the presence of the MBS phase in aperiodic

systems are developed in Sec. 4 and used in Sec. 5 to show MBS do exist in each of these QC-types.

The naturally following question is; are MBS expressed differently in each QC-type – that is to say,

does the underlaying QC structure have any effect on the MBS. These results suggest it does. Sec. 6

explores the character of the MBS in each QC-type by quantifying the abundance of MBS phase in the

parameter space, the MBS energy protection and localisation. There is a great deal of variation in these

properties found between each QC-type, principally in the compromise between increasing abundance of

MBS phase and those states having weaker topological protection.

The final area of focus of this paper towards the phase transition between topological and trivial phase.

1Putatively, Microsoft claims to have observed Majoranas in the kind of condensed matter system this paper explores
[6]. This conclusion is subject to a degree of ambiguity.
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Behaviour which indicates fractality is observed in the phase transitions of the QCs which is not present

in the normal crystal (NC). The results shown in Sec. 7 which indicate this call for more work to be done

to quantify this characteristic.

2 Background

This section provides the relevant background theory on the use of topology in the context of condensed

matter systems. Then, a general definition of Majorana fermions is given in terms of their particle

operators. Finally, the distinction between order in NCs and QCs is made, and the four particular

one-dimensional quasicrystal sequences which will be the focus of this paper are defined.

2.1 Topology in Condensed Matter

One of the core theoretical concepts addressed in this paper’s investigation of MBS is topological pro-

tection. Typically, systems in quantum condensed matter physics are represented by Hamiltonians [20]

which are parametrised in some physically relevant way. Some systems exhibit a topological phase change

between different parameter values. The topological phase of a system in this context is defined as the

phase within which continuous (adiabaticity connected) variation of the parameters leaves a certain quan-

tity of the system unchanged. This unchanged quantity is called a topological invariant. Systems with

non-trivial topology will exhibit topological phase transitions. This means over a certain parameter range,

continuous variation of the parameter will induce a discontinuous change to the topological invariant over

the phase transition at a critical parameter value. So, in some simplistic sense, the topology of a system

is about the discontinuous change of some property arising from purely continuous change of the defining

parameters.

The system investigated in this paper which gives rise to MBS exhibits non-trivial topology. MBS are

present over some continuously connected parameter region, and there is a topological phase transition

which breaks the MBS.

2.2 Introduction to Majorana Fermions

Majorana fermions, like any (quasi-)particle can be represented by their particle operators. In order to

understand the creation and annihilation operators for Majoranas, it is useful to first consider the more

familiar Dirac particle operators which describe the behaviour of Dirac fermions, such as electrons.

Condensed matter systems contain many particles over relatively large continuous distances in space,

this can make them difficult to model. Effective theories using discrete space, where particles exist

on lattice sites rather than a continuous space, help to simplify systems by leveraging periodicity. For

example, the electron creation (annihilation) operator c†j (cj) applied to a specific site index j will create

(annihilate) an electron at that site. These operators obey mathematical relations that relate to the
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character of electrons. Namely, the particle-hole asymmetry of electrons – given by cj ̸= c†j – entails the

anticommutator

{ci, c†j} = cic
†
j + c†jci = δij . (1)

In the same one-dimensional system we can define Majorana fermions with particle operators in terms

of the electron operators

γm = cj + c†j

γm+1 = −i(cj − c†j)

(2)

where m = 2j − 1. The analogous properties of γm can be derived to obtain the particle-like behaviour

of a Majorana mode. Crucially,

γm = γ†m (3)

suggests the Majorana mode is its own antiparticle, unlike Dirac fermions [21]. Moreover, Eq. (2) shows

that a single electronic site j contributes to two Majorana sites m and m + 1. In this way Majorana

fermions are (roughly speaking) like half an electron, and so two Majoranas paired together will simply

behave like an electron. To realise Majorana fermionic behaviour, the system must generate unpaired

Majoranas. How this is possible is detailed in Sec. 3.2.

2.3 Crystallinity and Quasicrystallinity

A crystalline system is one which follows a repeating pattern in space. This long-range periodicity

distinguishes crystals from non-crystals. A crystal can be described in terms of a lattice – a set of

discrete points in space that define the repeating structure. Each lattice point represents the position

of a unit cell, which is the smallest repeating building block of the crystal. The unit cell contains a

fixed arrangement of atoms or other structural elements, and by repeating this periodically the crystal

structure is formed. This is depicted in Fig. 1a and 1b where an abstract basis (a single circle in Fig. 1a

or two circles in Fig. 1b) is convoluted with the lattice sites to give the crystal where the unit cell length

l is shown to be the same in both cases regardless of the basis.

To define this more rigorously, let Aj denote a specific quantity of the system A at a particular lattice

site j. The system is crystalline for that property if

Aj = Aj+l

for all j, where l is an integer multiple of the fundamental periodic length of the crystal. This condition

enforces that under discrete transformations defined by l the same local structure appears periodically

throughout the system. If all the relevant properties of the system fulfil this periodicity condition then

the system is effectively crystalline.
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Figure 1: To generate a crystal a basis is convolved with a periodic lattice of sites, schematically repre-
sented in (a) and (b); despite the difference in basis between (a) and (b), in both cases the unit cell length
lC which characterises the periodicity is the same. (c) emphasises how a QC is different, the aperiodicity
means the smallest unit cell size lQC is the length of the entire system.

The focus of this work is on quasicrystals, which are ‘almost’-crystalline systems in the sense that they

have long range order but are not periodic. This means there is no unit cell which repeats itself regularly

throughout the crystal. This is shown in Fig. 1c (which is a depiction of the Fibonacci (golden ratio)

word shown in Eq. (4) below) where the smallest repeating cell is the length of the entire chain.

The four quasicrystal types considered in this paper are defined in Table 1 using inflation rules.

Quasicrystal Type Abbreviation Inflation Rule Order ϕ

Golden ratio (Fibonacci) sequence GQC
A→ AB

B → A
2 ϕG = 1+

√
5

2

Silver ratio sequence SQC
A→ BAA

B → A
2 ϕS = 1 +

√
2

Thue-Morse sequence TMQC
A→ AB

B → BA
2 ϕTM = 1

2

Plastic ratio sequence PQC

A→ B

B → AC

C → A

3 ϕP ≈ 1.324717

Table 1: The four types of QC sequences (words) which will be considered in this paper are defined here
by their inflation rules. Their order (the number of unique letters) is and characteristic ratio of number
of letters ϕ is given.

Inflation rules are iterative rules which form the quasicrystal sequence or ‘word’. An example of how
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they are applied for the GQC to form the GQC word wn
G of an inflation iteration n is

w0
G = A

w1
G = A→ AB

w2
G = AB → ABA

w3
G = ABA→ ABAAB

w4
G = ABAAB → ABAABABA

w5
G = ABAABABA→ ABAABABAABAAB,

(4)

where the word elements which were added by the previous iteration are highlighted in red, these are

acted on to generate the portion added to make the next iteration. The GQC is so-called because the

ratio of the number of A’s to B’s tends toward the golden ratio ϕG = limn→∞ |wn
G|A/|wn

G|B . Similarly the

SQC and PQC tend towards their characteristic Pisot–Vijayaraghavan numbers [22], whilst the TMQC

is unique in that it tends towards a rational number [23].

Defining the QC words using inflation rules results in specific predictable word lengths defined by the

inflation rules. Whether it is necessary to only use words of the correct inflation lengths, or whether it

is acceptable to truncate the words is a trade-off between inconsistencies. On the one hand, truncating

a word at an arbitrary length will do so at a different point in the sequence structure for each QC-type.

On the other hand, only using inflation lengths will result in different system sizes which then would not

be directly comparable. The only truly quasicrystalline word in all cases is the n → ∞ word, therefore,

even a correct inflation length is an approximant to the true QC. Given this, it will be acceptable in the

following to take the first L elements of the word as the QC.

There are good reasons to study each of these quasicrystal sequences. The GQC has been studied in the

literature [18], therefore, replicating results on it will be a useful benchmark. The SQC is generated in a

very similar way to the GQC [24], just the particular number the ratio elements of the series goes to (ϕ)

is different, therefore, it will be informative about the properties of this general QC-type if the QGC and

SQC result in similar or different Majorana properties. The TMQC is also order 22, but in a qualitatively

different way which results in an equal number of each element. Finally, the PQC is generated in a similar

way to the GQC and SQC but is order 33.

3 The Model

In this section the Kitaev model which will be the focus of this paper is defined, and a note is made on

how this model is physically realisable. The analytical proof for the expression of MBS in the Kitaev

2generated using two different letters
3generated using three different letters
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model is given by showing the effects of a finite chain on Majorana pairing. Finally, the method used to

introduce quasicrystallinity in this paper is described and justified.

3.1 Simple Kitaev Chain

The Kitaev model was the first proposal with the potential to physically realise Majorana modes in a

condensed matter system [11]. The toy model proposed by Kitaev consists of a one-dimensional chain of

atomic sites where each site can either be empty or occupied by electrons. The electrons are modelled

as being single-spin, or spinless. As depicted in Fig. 2 it is a tight-binding model permitting only first

nearest neighbour hopping, and the electrons in the chain exhibit p-wave superconductivity.

Figure 2: The Kitaev model consists of a one-dimensional chain of electronic sites placed on a bulk s-wave
superconductor. The arrows represent the hopping amplitude t between sites, which can vary to create
a quasicrystalline system.

Before detailing how this model is expressed quantum-mechanically, it is important to note that the

possibility of physical realisation is what drives interest in this particular abstract model. The full details

of how to do this is not the focus of this paper, but the two assumptions of spinless electrons and

superconductivity are not trivial and should be justified. The physical realisation of the chain itself is

proposed to be a a nano-wire of a semiconducting material like InAs [21]. This is to be placed on a

bulk of s-wave superconducting material like Al which ought to induce p-wave superconductivity in the

chain itself [25]. Finally, the spin degeneracy can be broken by placing the setup in a strong background

magnetic field. The resulting Zeeman splitting of the spinful electron energy breaks the degeneracy

(through spin orbit coupling) [26]. The introduction of the magnetic field is not trivial and requires

additional consideration in the Hamiltonian. This is not considered here, but has been done in [18].

The Hamiltonian for the simple model can be written in terms of the fermionic creation and annihilation

operators over sites j as,

HKitaev =

L
∑

j=1

−t(c†j+1cj + c†jcj+1) − µ(c†jcj −
1

2
) + ∆(cjcj+1 + c†j+1c

†
j). (5)

The three terms in Eq. (5) represent the following: (1) t quantifies the hopping amplitude of an electron

from site j to its nearest neighbour j+ 1 or the other way; (2) µ defines the chemical potential (or onsite

energy) which quantifies the energy associated with creating a particle at site j (note, the −1/2 offset is

a matter of convenience and does not represent anything physical since energy scale is not absolute); (3)
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∆ quantifies the energy associated with forming a superconducting Cooper pair of electrons, it is equal

to the the superconducting energy gap predicted by the BCS theory. It is not immediately clear from

Eq. (5) how this system gives rise to MBS; the next section manipulates it to give an analytic proof of

the existence of MBS in the Kitaev model.

3.2 Analytic Proof of Majoranas in Kitaev Model

Using the Majorana operators Eq. (2), the Eq. (5) can be rewritten in the Majorana operator basis and

regroup the terms in the following way,

HKitaev =
i

2

L
∑

j=1

(

− µγ2j−1γ2j + (t+ ∆)γ2jγ2j+1 + (∆ − t)γ2j−1γ2j+2

)

. (6)

There are two relevant parameter regimes of Eq. (6). The first is a trivial regime where ∆ = t = 0,

µ ̸= 0, which results in the following Hamiltonian,

Htrivial = − i

2
µ

L/2
∑

j=1

γ2j−1γ2j . (7)

The second, non-trivial regime is where ∆ = t ̸= 0, µ = 0, which results in the following Hamiltonian

Hnon-trivial = −it
L/2
∑

j=1

γ2jγ2j+1. (8)

The difference between these two regimes is in which sites j appear in the Hamiltonian. Crucially, this is

only apparent for a system with finite L – if L = ∞ then the shift in index j between these two equations

would be meaningless.

In Eq. (7) all indices from j to L inclusive appear as indices of one of the operators γ. Moreover, when

j = 1 the two Majorana operators are acting on sites 1 and 2, and when j = L/2 sites L − 1 and L

are being acted on. All the way along the chain each majorana is paired to its neighbour. However, in

Eq. (8) j = 1 and j = L are excluded. In this case, when j = 1 sites 2 and 3 are being acted on, and

when j = L/2 sites L and L+ 1 are being acted on, but clearly site L+ 1 does not exist for a finite chain

of length L. Therefore, Eq. (8) suggests the γ1 and γL majoranas are unpaired at either end of the chain.

This pairing distinction is depicted in Fig. 3b.

Now, a crucial insight from the definition of Majorana fermions given in Sec. 2.2 is that they are like

half an electron, in the sense that two Majoranas together combine to form an electron. In the non-trivial

majorana pairing regime described above there are unpaired Majoranas. This is how Majorana fermions

are realised in the Kitaev chain model. Furthermore, it is now apparent why unpaired Majoranas ought

to be localised (bound) to either end of the chain. The two parameter regimes are distinct topological

11



Figure 3: The chain of sites can be represented in the Majorana index m where each electronic site j
consists of two Majorana sites m, shown in (a) for L = 10. The Majoranas can be paired trivially (Eq. 7)
or non-trivially (Eq. 8) depending on the system parameters; the non-trivial pairing in (b) contains
unpaired Majoranas γ1 and γ20 at either end of the chain.

phases insofar as the continuous variation of µ, t and ∆ gives rise to a discontinuous change in pairing

character of the Majoranas.

This argument is analytic for the parameters precisely chosen to cancel terms of Eq. (6), however, it

is unclear from inspection whether MBS persist outside of the ideal µ = 0 regime. Eq. (6) for these

non-idealised parameters ∆ = t ̸= 0, µ ̸= 0 gives

Hnon-ideal = − i

2

L
∑

j=1

2t(γ2jγ2j+1) + µ(γ2j−1γ2j). (9)

It is clear from this equation that if µ is large enough (precisely µ > 2t) the trivial pairing dominates.

In order to determine the actual character of the MBS over this range of µ it is necessary to numerically

study the Hamiltonian.

3.3 Introducing Quasicrystallinity to the Model

The introduction of quasicrystallinity into the Kitaev model used in this paper is by the variation of the

hopping parameter t between sites. In an NC the hopping parameter is the same for all sites, so only a

single variable t is needed. To construct a QC the hopping amplitude can be varied by tj = f(j) where j

is the site index and f(j) is any function mapping j to a value tj . To construct the GQC, SQC, TMQC

(the order 2 sequences) or PQC (the order 3 sequence), let

fQC-type(j) ∈
{

{tA, tB} if QC-type = order 2

{tA, tB , tC} if QC-type = order 3
, (10)
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where fQC-type(j) is given by the QC words defined in Table 1.

The Hamiltonian can be rewritten in this general notation

HGeneral =

L
∑

j=1

−tj(c†j+1cj + h.c.) − µ(c†jcj −
1

2
) + ∆(cjcj+1 + h.c.). (11)

It is useful to define both

ρ =
tB
tA
, σ =

tC
tA
, (12)

now the Hamiltonian can be expressed in dimensionless form 4

HGeneral

tA
=

L
∑

j=1

−t̃j(c†j+1cj + h.c.) − µ

tA

(

c†jcj −
1

2

)

+
∆

tA
(cjcj+1 + h.c.) (13)

where

t̃j =











1 if f(j) = tA

ρ if f(j) = tB

σ if f(j) = tC

. (14)

Hereafter, the parameters will be referred to by this normalisation to tA.

Notably, this model only introduces aperiodicity to the hopping amplitudes, not to any of the other

parameters in the model. It is certainly possible to construct Hamiltonians for systems with variation in

µ, and in fact they have been shown to give equivalent behaviour [18]. However, varying t is the most

natural choice, since it can be easily realised by changing the interatomic spacing in a controlled way

[21]. Moreover, it is a significant assumption of the model that ∆ is independent of variation in tj , and

thus remains uniform throughout the system.

4 Numerical Methods for Confirming Majorana Modes

The model presented in Sec. 3 highlighted two motivations for using numerical methods to analyse the

system: (1) investigating parameter regimes outside of the ideal regimes which gave rise to Eq. (7) and

Eq. (8); and (2) how even in these ideal regimes the analytical approach fails due to the non-uniform

QC hopping potential. Taking these motivations forward, this section details precisely what numerical

methods are used to study the Hamiltonian and identify MBS in the NC and QCs.

4.1 Diagonalising Hamiltonian

In order to evaluate the properties of the system it is necessary to diagonalise the Hamiltonian to extract

the possible states of the system. These are given by the eigenstates |ψn⟩ of H which satisfy

H |ψn⟩ = En |ψn⟩ . (15)

4taking ℏ = 1 and the lattice constant a = 1
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|ψn⟩ are computed from diagonalising the matrix representation of H finding En which satisfy

det(H− EnI) = 0. (16)

Therefore, it is necessary to find a way to correctly express the Hamiltonian of the system as a matrix

H.

Hamiltonians which contain superconductivity are expressed in the Bogoliubov-de-Gennes (BdG) for-

malism. This method involves doubling the dimension of the matrix needed to express HKitaev to account

for the particle-like and hole-like contributions to the system, naturally accommodating the supercon-

ducting pairing. The formalism gives H, the matrix of eigenstates of the system in particle-hole operator

basis,

H =
1

2
ψ†HBdGψ (17)

where ψ is the Nambu spinor which is a column vector containing the fermionic hole and particle operators

cj and c†j for each site j = 1, 2, · · · , L in the system;

ψ =
(

c1, c2, · · · , cL, c†1, c†2, · · · , c†L
)T
. (18)

The expression of the system is given in HBdG

HBdG =

(

H0 ∆

∆† H0
∗

)

(19)

where H0 is the normal-state Hamiltonian with no superconducting term, describing a tight-binding

model of electrons with an onsite potential term5.

H0 =















−µ −t 0 0 . . .
−t −µ −t 0 . . .
0 −t −µ −t . . .
...

...
...

. . .
...

0 0 0 −t −µ















. (20)

Finally, ∆ is the superconducting pairing matrix, this is defined as

∆ =















0 ∆ 0 0 . . .
−∆ 0 ∆ 0 . . .

0 −∆ 0 ∆ . . .
...

...
...

. . .
...

0 0 0 −∆ 0















. (21)

Both H0 and ∆ are L× L dimensional, hence, the full matrix expression of HBdG is a 2L× 2L matrix.

5N.B. if the model allowed for higher order neighbour hopping these terms would appear in the third and higher off-
diagonals in H0.

14



Calculationally, only HBdG is daigonalised. The full expression of HBdG is

HBdG =





















u1,1 . . . un,1 . . . uN,1

...
. . .

...
. . .

...
u1,L . . . un,L . . . uN,L

v1,1 . . . vn,1 . . . vN,1

...
. . .

...
. . .

...
v1,L . . . vn,L . . . vN,L





















(22)

where un,j and vn,j correspond to the particle and hole contributions of the jth site to the nth energy

eigenstate. Each eigenstate |ψn⟩ is a column of HBdG, and the full contribution of a single site to that

state is un,j + vn,j . The system has N = 2L eigenstates, ordered from lowest to highest energy. The

symmetry of the particle-hole representation means the states |ψn⟩ and |ψ(N/2)−n⟩ have the energy ∓E.

The MBS are expected to be at zero energy, thus at |ψN/2⟩ and |ψ(N/2)+1⟩. In Fig. 4a each line is an

eigenstate whose energy E is evolving as µ/tA is varied. The MBS can be identified as two degenerate

states at E = 0 which break at µc/tA ≈ 2 indicating the end of the MBS phase. Note how the contribution

from each site to the state |γ⟩ = |ψN/2⟩ + |ψ(N/2)+1⟩ shown in Fig. 4b indicate localisation at the edges

of the chain for µ/tA ≪ 2, broader spreading as µc/tA ≈ 2 and complete delocalisation for µ/tA > 2.

Contrastingly, the contributions to a bulk state shown in Fig. 4c are spread over all sites.

4.2 Pfaffian Topological Invariant

It has been shown in Sec. 3.2 that MBS are zero-energy states which must be localised to the edge of

the chain due to the unpairing property of the Hamiltonian. It was also clear from this analysis that

the states in the bulk of the system (the sites included in Eq. 8) had non-zero energy. The bulk-edge

energy gap can therefore be seen as an indicator of topological protection of the MBS. In Fig. 4a the bulk

states energies are decreasing – lowering the bulk-edge energy gap – as µ/tA increases. Correspondingly,

the edge states in Fig. 4b are becoming less localised to either end of the chain whilst in Fig. 4c the

bulk state’s contribution to the edge sites increases with µ/tA. Much can be deduced from bulk-edge

correspondence, however, there is a more robust and general way to determine the MBS edge properties

from looking only at the bulk.

Most established approaches to topological invariance derive from properties of the momentum space

representation, which is very powerful for periodic systems with translational symmetry. In short, the

momentum space is the reciprocal of the real space. This means periodicities with infinite spatial extent

in real space are folded into one point in reciprocal space. It is possible to leverage the periodicity of the

finite Kitaev chain by introducing periodic boundary conditions (PBCs)

|j = 0⟩ = |j = L⟩ (23)
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Figure 4: The allowed energies (of the eigenstates) is be obtained from diagonalising the Hamiltonian;
(a) plots the symmetric energy distribution of each eigenstate of an NC with L = 50,∆ = ρ = 1.0 as
a function of µ/tA where the MBS states are degenerate at E = 0. They break at the critical µc/tA
of the phase transition, marked by the red dashed line in. The contribution of the MBS eigenstate (b)
and a single bulk eigenstate (c) is decomposed over sites j of the chain. (a) shows the two MBS states
are localised for µ/tA = 0.5 deep in the MBS phase, just overlapping for µc/tA ≈ 1.8 near to the phase
transition, and fully delocalised for µ/tA = 2.3 in the trivial phase. Conversely, (b) shows how the bulk
eigenstate is always delocalised, and increasingly contributing to the edge sites as µ/tA increases.

Now, applying Bloch’s theorem [27] the momentum state ought to be

|k⟩ =
1√
L

L
∑

j=1

eikj |j⟩ ,

where for L ≫ 1, k can be thought of as a continuous periodic variable in the interval k ∈ [−π, π] – the

Brillouin zone. Applying this transofrmation to HBdG reduces it to a 2 × 2 matrix

H̃BdG =
∑

k

H(k) |k⟩ ⟨k| (24)

where

H̃(k) ≡ ⟨k|HBdG |k⟩ .
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This matrix can be diagonalised to obtain the band structure, shown in Fig. 5, where the significant

feature is the bands crossing E = 0 at k = 0 (k = ±π) for µc/tA = −(+)2. Such zero-energy crossings

tend to be the result of a conserved quantity [28]. Due to the superconductivity in the Kitaev model, the

overall particle number is not conserved, however, the fermionic parity (whether there is an odd or even

number of fermions in the system) is conserved [29]. The particle-hole symmetry of the BdG formalism

enforces H̃(k) = −H̃(−k) in momentum space. Hence when a symmetric pair of eigenstates crosses

through E = 0 the excitation energy of the BdG quasiparticle changes sign (it becomes favourable or not

to form one). Each time, this changes the fermion parity.

Figure 5: The bandstructure is derived form the momentum space representation of HKitaev of a periodic
Kitaev chain at ∆ = 1.0. This elucidates the zero-energy band crossings at k = 0 (k = ±π) for
µc/tA = −(+)2.0 which result in changes in fermionic parity – tracking the topological phase. The
Pfaffian is used as an invariant to track this change, giving P = −(+)1 in the topological (trivial) phase.

It is possible to quantify the resulting fermion parity switch using the Pfaffian which is defined on a

skew-symmetric matrix [30]. Applying this unitary transformation

1

2

(

1 1
i −i

)

H̃BdG

(

1 −i
1 i

)
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makes H̃BdG skew-symmetric. Performing this operation on H̃(0) and H̃(π) yields

H̃(0) =
1

2

(

1 1
i −i

)(

−2t− µ 0
0 2t+ µ

)(

1 −i
1 i

)

= −i
(

0 −2t− µ
2t+ µ 0

)

,

H̃(π) =
1

2

(

1 1
i −i

)(

2t− µ 0
0 −2t+ µ

)(

1 −i
1 i

)

= −i
(

0 2t− µ
−2t+ µ 0

)

,

where now the Pfaffian of either matrix can be read off

Pf[iK̃(0)] = −2tA − µ/tA

Pf[iH̃(π)] = 2tA − µ/tA.

(25)

By inspecting the the behaviour of the sign of the Pfaffians shown in Fig. 5 it becomes clear an overall

topological invariant is given by

P = sign
(

Pf[iH̃BdG(0)] Pf[iH̃BdG(π)]
)

, (26)

where it has been shown to take the values P = −(+)1 when MBS are (not) present in the NC system.

However, P has three key limitations. (1) The quantity relies on the momentum space representation of

the system derived from introducing PBCs6. This excludes QCs both for the reason they do not the same

kind of momentum space as periodic systems, and that principally, introducing PBCs to an aperiodic

model by definition makes it periodic, changing its structure entirely. (2) P does not distinguish between

trivial zero energy modes (TZMs) [32] and the topologically non-trivial modes of the MBS. This is not a

problem in NC systems as TZMs do not typically occur, however, they are a feature of aperiodic systems

[9, 33–36]. (3) Finally, P is system size independent (due to the PBC folding the end of the chain into

itself), this means it is not well-suited to determining where the phase transition will actually occur in

a finite system. As L → ∞ the critical value of µc/tA → 2, but for a finite L it is strictly less than

this. Therefore, it is necessary to develop a different kind of topological indicator which can be calculated

directly in real space and which affords the possibility of distinguishing between TZMs and MBS.

4.3 Majorana Polarisation

Given the limitations of P, it is necessary to define a new topological indicator – the Majorana Polarisation

(MP) – which can determine the presence of MBS directly in real-space. The local MP for a specific

energy eigenstate (indexed by n) at site j is defined using the particle-hole operator C,

Pj =
⟨ψj,n|C |ψj,n⟩
⟨ψj,n|ψj,n⟩

=
ujv

∗
j + u∗jvj

|uj |2 + |vj |2
, (27)

where C = eiζ τ̂xK̂ for an arbitrary phase ζ, the complex conjugate operator K̂ and the ith Pauli operator

τ̂ i in the particle-hole basis.

6Although, there is work on skew-symmetrising the Hamiltonian in other ways which allow the Pfaffian to be applied to
the real space representation [31]
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To calculate the global MP for a particular energy level n, first Pd is calculated as

PL =

∑L/2
j=1 ⟨ψj,n|C |ψj,n⟩
∑L/2

j=1 ⟨ψj,n|ψj,n⟩

PR =

∑L
j=(L/2)+1 ⟨ψj,M−n|C |ψj,M−n⟩
∑L

j=(L/2)+1 ⟨ψj,M−n|ψj,M−n⟩
,

(28)

where M = (N/2) + 1 and d ∈ {L,R} denotes the left and right halves of the sites of the system. MBS

will be at zero energy which is given by the eigenstates corresponding to n = N/2. The MP is given by

M = PL · P ∗
R = P ∗

L · PR (= PL · PR)
7

. (29)

When M = −1, that particular energy level of the system n hosts well-localised MBS. Then, any

departure of MP from this value indicates hybridisation of the two MBS (at either end of the chain) and

thus a breaking of the topologically non-trivial Majorana pairing – a change of phase. This characteristic

can be derived from the particle-antiparticle symmetry of the Majorana fermion. In Appendix A the

eigenstates of a simple two-site system are used to show this.

4.4 Contextual Indicators

Although the MP is specifically designed to capture the characteristics of MBS in its value, it is possible,

and indeed useful to confirm these characteristics indirectly through other methods. This section will

demonstrate how the spectral function and inverse participation ratio can be used as contextual indicators

of the presence of MBS in NC and QC systems.

4.4.1 Spectral Function

Typically, the density of states is calculated to find the distribution of states over an energy range. This

will identify the existence of states at zero energy, however, since MBS are localised, which sites contribute

to that particular zero-energy state is also important. Both of these factors are captured by the spectral

function, which can be calculated directly from HBdG for a specific set of parameters (µ/tA,∆, ρ, (σ), L)

over an energy range ωmin ≤ ωi ≤ ωmax. First, the Greens function G [37] of HBdG,

G(ω,HBdG) = ((ω + iη)I−HBdG)
−1
, (30)

is calculated for each energy ωi where η is a numerical broadening factor. Then, A(ωi, j) is obtained by

performing the following operation on each element of G

A(ωi, j) = − 1

π
Im(G), (31)

7Noting that in general the values of PL and PR can be complex, but in the spinless system considered here they will
always be real, hence the final bracketed expression is true in this case. In fact in this model there is further simplification
to be made to (27) which takes the complex conjugates of the particle and hole components on the numerator. This is not
necessary as ∆ = ∆∗ which is not true in general due to the superconducting phase, but is valid in this model.
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where A(ωi, j) is a matrix, each row corresponding to a certain site j and each column to a certain energy

ωi.

Even for a spatially discrete system, the spectral function ought to be continuous in energy. This is

well-approximated numerically with a sufficiently high energy resolution alongside a sufficiently large η.

Typically ∆ω = ωi+1 − ωi = 0.001 and η = 0.01 here unless otherwise specified. There is a balance to

be struck between approximating continuity and over-broadening which would wash out the finer detail

of the function.

The spectral function should obey the specific normalisation condition that the sum of the integrals of

A(ω, j) over all sites should equal the number of states N = 2L,

∑

j

∫

A(ωi, j) dω ≈
∑

i,j

A(ωi, j)∆ω = N, (32)

where the numerical approximation to the continuous function involves summing over discrete energies

ωi multiplied by the finite energy spacing ∆ω. In the limit ∆ω/(ωmax −ωmin) → 0 the approximation to

the integral becomes exact.

4.4.2 Inverse Participation Ratio

On the assumption that the MBS are exponentially localised, one standard metric for quantifying quantum

state localisation is the localisation length. This is defined on any ψ(x) modelled by

|ψ(x)|2 ∝ ex/ζ , (33)

Where ζ is the localisation length. This metric is suitable for quantifying the localisation of the MBS in

a system-size dependent way. However, it cannot distinguish between the MBS phase with exponential

localisation, and the trivial phase with delocalisation. Therefore, it cannot be applied to determine the

phase of the system, only as a metric on the MBS state once its existence is otherwise established.

The inverse participation ratio (IPR) presents a different way to probe the localisation of a particular

state of the system. Instead of relying on a visual interpretation of the zero-energy states in the spectral

function, the IPR can be calculated at a specific set of parameters (µ/tA,∆, ρ, (σ), L) by

IPR(n) =

∑

j |ψj,n|4
(
∑

j |ψj,n|2
)2 (34)

which quantifies the ratio of sites j contributing to a particular eigenstate ψn to the total number of sites.

Evaluating the IPR for a range of system-sizes L permits the identification of the localisation character

of the state at that µ/tA, ρ, (σ),∆ in a system-size independent way. If the state is delocalised, IPR(n, L)

goes like 1/L, whereas if the state is localised, it decays exponentially. The constant the IPR decays to
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will be larger for a more localised state [38].8 Modelling

IPR(n, L) = Ae−kL + c, (35)

the limiting localisation of the MBS can be extracted Eq. 35 for n = N/2 as the constant c = IPRc.

5 Results Confirming Majorana Bound States in Quasicrystals

The combination of all of the tools presented Sec. 4 are used to determine that MBS are generally present

in different QC-types. Figs. 6 and 7 present a summary of the MP (Figs. 6&7b), spectral function

(Figs. 6&7a) and inverse participation ratio (Figs. 6&7c). For the purposes of this analysis, the other

QC-types presented qualitatively similar features, see the results in Appendix C.1. In all cases the QCs

host MBS for L = 50,∆ = 1.0, ρ = 2.0 (and σ = 3.0) and exhibit a phase transition for varying µ/tA.

Figure 6: The methods used to characterise MBS are confirmed on the normal crystal (NC) at ∆ = ρ =
1.0. (b) L = 100, the eigenvalues and Pfaffian invariant P are plotted over a range of µ/tA to show the
phase transition. (a) and (c) show the spectral function and IPR (for 2 ≤ L ≤ 100) respectively for three
values of µ/tA = 0.5, 1.8, 2.3. The MBS can be identified at ω = 0 for µ/tA < µc/tA as being localised to
the edge sites. For µ/tA > µc/tA the MBS departs from ω = 0 and becomes fully delocalised, changing
the IPR relationship from exponential to 1/L.

8Although not included in this paper, the IPR ought to permit a more precise phase transition demarcation than the
MP due to the drastic divergence of a 1/L curve from an exponential decay.

21



Figure 7: MBS are hosted in the GQC at ∆ = ρ = 1.0. (b) L = 50, the eigenvalues and Majorana
Polarisation M are plotted over a range of µ/tA to show the phase transition for µc/tA ≈ 2.6 as soon
as M ̸= −1. The MBS is still localised at ω = 0 for µ/tA < µc/tA despite the disturbance to the bulk
states visible in the spectral function (a). As predicted, the IPR has an exponential fit for µ/tA = 0.5
and 2.5 in the topological phase, and a 1/L fit for µ/tA = 3.0 in the trivial phase.

5.1 Discussion

The most notable difference between the NC and GQC is the complexity of the energy structure of the

bulk states. In the NC at µ/tA = 0 the bulk states are degenerate at E = 2tA, however, in the GQC

they are pushed both up and down in energy towards the MBS at E = 0. The bulk-edge correspondence

analysis in Sec. 4.2 would lead to the intuition that this results in less persistent MBS in QCs. However,

the evolution of the MBS gap over increasing µ/tA is not linear as in the NC, and so the GQC still

exhibits a larger region of MBS phase than the NC at this particular ∆ = 1.0. This is only a snapshot

of a multi-dimensional parameter space to be explored; more detailed analysis on the abundance of MBS

phase in the parameter space is given in Sec. 6.

The relative size of the MBS gap is typically tuned by the superconducting gap ∆, or rather, the ratio

between the hopping amplitude and ∆. In the NC this is well defined as there is only one value of

tj = t. However, in the QCs the introduction of other hopping parameters obscures this relation. It

is likely misleading to compare QC-types directly with ρ (even more so between order 2 and order 3

QC-types), since between the GQC and SQC for example, there are a different number of tA’s and tB ’s

in the sequence by definition of ϕG ̸= ϕS. Therefore, the average hopping of each QC-type differs for
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equivalent ρ. Other normalisation methods which account for this have not been presented in this work.

Unlike the NC where large L9 tends towards a quasi-continuous distribution of energy between the

upper and lower bulk energies, the gaps in the allowed energies of the GQC persist to large L. The

particular structure of these gaps can be analysed using gap labelling theorem [18, 39–41]. This is not

confronted in the present work, but the significance of these gaps is brought to attention again when the

phase transition is analysed in Sec. 7.

The second important difference between the NC and GQC is in the uniformity of spreading of the

MBS state away from the edge sites. In 6a the spectral weight of the MBS state at ω = 0 in the NC

decays uniformly and monotonically and is symmetric about the middle of the chain. On the other hand,

in 7a the GQC the spectral weight fluctuates as it leaks into the bulk, decreasing non-monotonically.

Furthermore, there is asymmetry between the the spectral weight at sites j and L − j. This is clear in

Fig. 7a for µ/tA = 0.5 where the MBS at the bottom of the chain is more localised than its counterpart

at the top. This is a product of the QC aperiodicity which implies the local structure at either end of

the chain is likely different.

Finally, there is a broader non-uniformity in the spectral function across sites apparent in the QCs and

not in the NC. Whilst the bulk spectral function of the NC appears to vary minimally (and where it does

so periodically) for any vertical slice in ω across all sites, the QC systems have clear patterns. These are

most easily seen in the low spectral weight areas where the logarithmic scale picks up small variations in

weight near zero more strongly, but the pattern can then be followed horizontally across into the bulk.

It can be shown that the specific pattern of spectral weight is directly related to the generating word

sequence. In Appendix B this phenomenon is confirmed through investigating the frequencies of the

spectral function in a dimerised system (in the limit of ρ→ 0).

6 Comparing Quasicrystal Types

In Sec. 5 the MBS expression for each QC-type was demonstrated only for varying µ/tA at L = 50,∆ =

1.0, ρ = 2.0. This section broadens the scope of the analysis to varying ∆ and ρ and compares QCs by

quantifying the abundance, protection and localisation in this parameter space.

6.1 Abundance of Majorana Bound States

One way to characterise the expression of MBS in QCs is to determine how abundant they are over

various parameter ranges. Abundance here is defined as the amount of parameter space for which the

system contains MBS. It is interesting to probe the µ/tA versus ρ space for a few values of ∆ on a fixed

system size L. Only the GQC and PQC (σ = 3.0) are presented here, see Appendix C.2 for the other

GQ-types.

9Increasing the number of computed eigenstates since 2N = L.
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Fig. 8 shows the MP in colour over the µ/tA versus ρ parameter space continuously varying from M = −1

(topological) to 0. As noted in Sec. 4.3 and detailed in Appendix A, the phase transition occurs as soon

as there is any deviation from M = −1. Therefore, In order to properly define the phase transition the

MP is discretised to a tolerance of 0.01, defining the phase transition line (shown as the red line on the

Fig. 8). Once this is defined, the abundance of the MBS phase can be calculated from the finite difference

integral of the discretised MP-curve Mdisc(µ/tA, ρ),

I =

∫ ρ2

ρ1

∫ µ2/tA

µ1/tA

M(µ/tA, ρ) d(µ/tA) dρ

≈ ∆µ∆ρ
∑

i

∑

j

M(µi, ρj).

(36)

Notably, the region of MBS phase extends to ρ = ∞ for µ/tA = 0.0 and again to infinity by a linear

relationship between ρ and µ/tA which differs in gradient for each QC-type. This means in a trivial way

the abundance of MBS phase is infinite in all cases. However, practically, the width of this oblique region

of MBS phase decreases with higher ρ and µ/tA – meaning its area contribution becomes insignificant

– and moreover, calculationally, the MP value will always depart from −1 by some finite amount as the

limit of precision of the simulation is reached.

The overall energy scale of the system is arbitrary, by tuning up all of the parameters together, the

same phase transition shape will be obtained relative to the parameter window used. Therefore, it is

expected that over any properly normalised range of ∆ there would be a regime where the phase area

significantly exceeds the parameter window (the left column of Fig. 8 where ∆ = 1.0); another regime

where the value of ∆ is too small to give MBS phase within the MP tolerance for most of the parameter

window (the right column of Fig. 8 where ∆ = 0.1); and a final regime where the value of ∆ is such that

the phase area is well-contained within the parameter window and there is appreciable MBS phase (the

middle column of Fig. 8 where ∆ = 0.5). The abundance of each of the ∆ values simulated is plotted in

Fig 9a.

On the shape of MBS phase in each QC-type there is clearly a great deal of complexity in the interplay of

µ/tA, ρ and ∆. Most notably Fig. 8 shows that the introduction of quasicrystallinity to the system permits

multiple phase transitions over a range of µ/tA. The parameters used in Figs. 6 and 7 were conveniently

chosen to exhibit regions of continuous phase in each QC-type for clearer comparison. However, seeing

the fuller realisation of the parameter space in Fig. 8 this feature is clearly not general. It is not possible

to generate multiple phase transitions in the NC system principally because of the energy uniformity of

the bulk states. The gaps present in the bulk states of QCs give rise to their specific phase profile for a

fixed ρ slice of Fig. 8. The relative size of these energy gaps dictates how many regions of MBS phase are

expressed for a given slice in ρ. The ratio of bulk energy gap sizes in the GQC is larger than the PQC,

giving rise to a single larger region of trivial phase for high ρ versus more numerous smaller regions of
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(a) GQC

(b) PQC with σ = 3.0

Figure 8: The full parameter space of /mu/tA, ρ and ∆ can be explored using the MP to characterise the
phase (in colour) recalling M = −1 in the MBS phase. The parameter ranges presented are 0 < µ/tA <
5.0 and 0 < ρ < 5.0 with L = 50 and ∆ = 0.1, 0.5, 1.0 for the left, middle and right columns respectively.
The phase transition is delineated with the (red) line from a tolerance of 0.01. The area and shape of
phase space covered by the GQC is drastically different to the PQC for all ∆.

trivial phase in the PQC at the same point. There is analysis of this phenomenon given in Sec. 7 where

the bulk energy gap sizes are shown clearly in Fig. 12.

The effect of decreasing the superconducting gap (which is directly related to the bulk-edge energy gap)

is clearly to reduce the abundance of MBS in µ/tA, ρ–space. Decreasing the bulk-edge energy gap leads

to stronger interference of the bulk states with the edge states and this consequently breaks the MBS

phase. It is useful to visualise the variation of this energy gap in the same parameter space, as is done

next in Sec. 6.2.

6.2 Protection of Majorana Bound States

The bulk-edge energy gap, or MBS energy gap, can be calculated from the energy difference between the

MBS (at zero energy) and the first excited eigenstate for each set of parameters. The energy eigenvalues
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Figure 9: The abundance of MBS phase in the parameter space (a) and the MBS gap weighted abundance
(b) can each be reduced to a single number, as plotted here for varying ∆ corresponding to the values
in Fig. 8 (plus more values for the order 2 QCs) for each QC-type. The abundance of the order 2 QCs
appears to be proportional to log10 ∆ (dashed black line), whereas the the PQC shows drastically different
behaviours. The MBS–weighted abundance of the order 2 QCs is almost indistinguishable for low ∆,
but divergence by different linear gradients is observed for ∆ > 0. The trend of the PQC relative to this
is inconclusive, but may obey the same linear limiting behaviour. Note the normalisation effect of the
MBS–weighting bringing the PQC values closer to the order 2 QCs for ∆ = 1.0.

are

En ∈ {E1, E2, ..., EN} (37)

where Eω=0 = EN/2 = E(N/2)+1 are the two degenerate MBS eigenvalues and the first excited energy

state will be E(N/2)−1 = −E(N/2)+2. This gives

MBSgap = EN/2 − E(N/2)−1 = E(N/2)+2 − E(N/2)+1. (38)

The MBSgap can be calculated for each point in the parameter space within the region of topological

phase defined by the MP phase transition.

Again only a subset of data is displayed here, see Appendix C.3 for other QC-types. Each plot in Fig. 10

is set to the same energy scale, as such it is apparent that the PQC in Fig. 10b does not reach the same

peak MBSgap as the GQC. Therefore, despite the greater abundance of MBS phase in the PQC, the

degree of protection of these MBS states is everywhere lower compared to the order 2 QC-types. This

can be quantified in a similar way to the abundance calculation given in Eq.(36). Now, taking the integral

over the MBSgap will give a protection-weighted metric for each plot which can be compared between

values of ∆ and QC-types. Fig. 9b shows this trade-off clearly in the values for ∆ = 1.0; the Abundance

of the PQC (σ = 3.0) is 42.6% higher than in the GQC, whereas the MBSgap-weighted abundance in only

0.01% higher.

Beyond this, it is important to emphasise the compromise between obtaining MBS phase for surprisingly

large µ/tA values when compared with what is possible in the NC and how well-protected these MBS

are. For practical applications of MBS a critically small energy protection might render them useless.
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(a) GQC

(b) PQC with σ = 3.0

Figure 10: The bulk-edge energy gap, or MBS energy gap, can be calculated for parameter points within
the MBS phase. The parameters match those of Fig. 8 for ∆ = 1.0, 0.5 (excluding ∆ = 0.1 since all
QC-types had little-to-no phase for L = 50) for the left and right columns respectively. The MBS energy
gap is in colour and the grey area indicates trivial phase. The PQC reaches much lower MBS energy gap
protection than the GQC (and other order 2 QC-types – results in Appendix C.3). The edge regions of
MBS phase exhibit very weak topological (energy) protection.

6.3 Localisation of Majorana Bound States

The final MBS characteristic of interest is their spatial localisation. This has so far been presented as

going hand-in-hand with the energy protection to dually define the ‘topological protection’ of the MBS.

Fig. 11 plots log10 IPRc (defined in Sec. 4.4.2) in µ/tA, ρ-space. Notably, log IPRc is approximately

constant for all ρ in the region µ/tA < 1. This constancy must derive from the fact that the MBS is so

localised for these µ/tA that the state sees very few variable hopping sites, thus ρ makes little difference

to the MBS. This is consistent with the behaviour of log IPRc for µ/tA > 1 where the MBS will be

appreciably spread and will interact with many variable hopping sites, thus ρ has a significant effect here.

This behaviour is distinctly different to the MBSgap in Fig. 10 which always varies in ρ. However, does

not provide a basis for differentiate between QC-types.
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Figure 11: The system-size independent characteristic IPRc is extracted for the GQC by simulating over
a range of 2 ≤ L ≤ 60 for each point in the µ/tA, ρ parameter space. log10 IPRc is plotted in colour for
clarity. Within the MBS phase region the IPRc does not vary in the same way as the MBS energy gap –
remaining approximately constant for all ρ at low µ/tA < 1.

7 Phase Transition Analysis

The observation that QCs undergo multiple phase transitions over a range of µ/tA where the NC does

not was made in Sec. 6.1. Moreover, the link between this phenomenon and the complex bulk energy gap

structure of QCs observed in Sec. 5 was alluded to. Here, some further observations are made on this

topic and a heuristic argument is made for the presence of fractal behaviour in the phase transition.

Fig. 12 shows the eigenvalues of the GQC and TMQC over a range of µ/tA for two different values of

∆. For larger ∆ in Fig. 12a there is only one region of broken MBS phase in the GQC, however, as ∆

is decreased the MBS phase is broken into more separate regions. This is precisely what was observed

between the values of ∆ in Fig. 8.

In both the GQC and the TMQC the hierarchy of bulk energy gaps can be most clearly observed at

µ/tA = 0, and then followed down, towards zero energy as µ/tA increases. Looking at the gaps in this

way shows clearly how they ‘press in’ on zero energy to break the MBS phase. Moreover, the energy gap

size at µ/tA = 0 can be directly related to the ‘MBS-phase-breaking strength’ of that gap, and the size

of the region of broken phase it induces.

The phase transition can be tracked explicitly for changing ∆ as in Fig. 13, which demonstrates the
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Figure 12: The bulk energy gap structure can be aligned with the regions of MBS phase-breaking, shown
here for the GQC (a) and the TMQC (B) for ∆ = 0.2. Gaps which appear larger at µ/tA = 0 have
a stronger effect phase-breaking effect (following the orange arrows), whereas smaller gaps are reflected
back from the MBS energy gap (following the pink arrows). The relative weights of the largest to next-
largest band can be seen most clearly for ∆ = 0.0 for the GQC (c) and TMQC (d) the height and width
of the gaps at |E| > 0 can be tracked to E = 0 and shown to be conserved (by the black arrows).

emergence of more regions of trivial phase with increasingly small regions of MBS phase in between. This

plot demonstrates the limiting size of each trivial phase region, related to the relative sizes of the bulk

energy gaps at µ/tA = 0 in Fig.12.

The complex hierarchical structure of the bulk energy gaps and consequently the MP appears to exhibit

signs of self-similarity – characteristic of fractality. The repeating structure of domes of trivial phase can

be seen in Fig.13a. Then, Fig.13b zooms in both ∆ and µ/tA compared to Fig.13c which is an increased

system size. The appearance of finer detail of the phase transition is commensurate with fractality. This

would not come as a surprise given the inherent fractal nature of the QC sequences used to generate

these systems. The necessary further analysis would be to employ gap labelling theorem on the other

QC-types, as has been done on the GQC already. Furthermore, the fractal dimension of the curve of MP

as a function of µ/tA could be calculated as has been done for other Fibonacci QCs [19]. I propose further

that the methods of Fourier transform analysis utilised in Appendix B might also provide meaningful

insight into the direct correspondence between the features of the physical system mentioned here and

the abstract generating sequences.
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Figure 13: The MBS phase-breaking along µ/tA can be tracked by the MP and show the manifestation
of the bulk energy gaps shown in Fig. 12. The emergence of more phase-breaking regions for decreasing
∆ in (a) for ρ = 2.0, L = 50 appears fractal in nature. The self-similarity is shown further by enlarging
the µ/tA and ∆ scales for (b), which can be compared to (c) which is for L = 100, in which finer detail
of the transition complexity appears at this system-size.

8 Conclusions and Outlook

This paper set out with three aims: (1) to determine whether presence of MBS in Fibonacci (golden) QCs

was unique to this QC-type, or whether MBS could be found more generally across a range of different

QC-types; (2) to characterise the expression of the MBS phase in these QC-types; using existing and

novel techniques to quantify and compare QC-types; (3) to elucidate the properties of the QC systems

which indicate fractal behaviour.

The first has been achieved by evaluating existing topological techniques – through which the Pfaffian

invariant was shown to be inadequate in favour of the Majorana Polarisation (MP) – alongside carefully

chosen contextual indicators (spectral function and inverse participation ratio) of the MBS character. It

was concluded that MBS do exist in each of the four QC-types considered here (the golden ratio, silver
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ratio, Thue-Morse and the Plastic ratio QCs), and therefore that they ought to be a general feature of

one-dimensional QC systems (within the bounds of the Kitaev chain model).

To achieve the second, new quantitative methods were developed on the existing parameter space qual-

ification using MP and the MBS energy gap; and the original technique of extracting IPRc from the

exponential IPR fit was developed. The principle conclusion from this comparison between QC-types

was the delicate interplay between abundance of MBS phase obtained by the PQC versus the strength of

protection afforded by the other order 2 QCs. An evaluation of ‘better’ protection would depend on the

intended use of the MBS in the system and the limits of the materials available.

The third aim provides the basis for much of the future work this paper lays the groundwork for. Part

of the future work of is to performing fractal dimension calculations and Fourier analysis on the MP as

a function of µ/tA and distributions of eigenvalues as a function of both energy and µ/tA. Furthermore,

the exact process of the phase transition from QC to NC by varying ρ from the fully dimerised model

(discussed in Appendix B) at ρ = 0 to the NC at ρ = 1 requires further investigation.

Overall, the methods developed on here open the door to investigation of more general system types in

three crucial ways. (1) Developing the Kitaev model to better approximate real systems, i.e. introducing

electron spin and the magnetic field needed to break that degeneracy; the models for this exist in the

literature, but only for GQC, therefore it ought to be extended to the other QC-types considered here.

With verified real-space topological indicators for MBS developed, there is (2) scope to look further into

two-dimensional QC systems [42], where aperiodicity can be introduced in ways other than hopping (e.g.

the tiling of a space); and (3) the methods to analyse generally amorphous matter which presents no

order, but may nonetheless host MBS in interesting ways.
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A Interpreting the Majorana Polarisation

This appendix provides an argument for the interpretation of the MP value, specifically, how its departure

from M = −1 indicates hybridisation of the MBS and thus a breaking of the non-trivial Majorana pairing

that generates the topological phase [43, 44]. It has been given in Eq. (3) that the Majorana operator γ

is particle-antiparticle symmetric. Letting a Majorana quantum state be |γ⟩, we can define the action of

the particle-hole operator C on it as

| ⟨γ|C |γ⟩ | = 1. (39)

In contrast, | ⟨ϕ|C |ϕ⟩ | = 0 for a fermionic state |ϕ⟩ since it is particle-hole antisymmetric. Now, solving

a system of two sites for µ = 0, ∆ = t ̸= 0 analytically and inspecting the two eigenstates corresponding

to zero energy ω = 0

|ψ+⟩ =
1√
2

(0, 1, 0, 1)T

|ψ−⟩ =
1√
2

(−1, 0, 1, 0)T ,

(40)

it is clear that of the two sites, |ψ+⟩ is perfectly localised to the right-hand site and |ψ−⟩ to the left-hand

site. By calculating the domain polarisations as given in (28)

PL =
⟨ψ−|C |ψ−⟩
⟨ψ−|ψ−⟩

= −1

PR =
⟨ψ+|C |ψ+⟩
⟨ψ+|ψ+⟩

= 1,

(41)

the global value for MP is M = −1·1 = −1, demonstrating the zero energy modes with perfect localisation

to either end of the chain (as is characteristic of Majorana modes) requires a value of M = −1 [43]. Else

there would have to be non-zero values in the other site elements of |ψ+⟩ and |ψ−⟩, indicating overlap.

It is apparent from this analysis how the MP can differentiate between true Majorana modes which are

localised, and trivial zero modes arising elsewhere in a longer aperiodic chain. Aside form the argument

presented here, the MP has been verified against the Wilson Loop method [18].

B Pattern Recognition in the Dimerised Model

In Sec. 5 a seemingly aperiodic pattern for a fixed energy over the range of sites was observed. Here, this

pattern is explored by comparing the Fourier transform of the spectral function at ω = 0 to that of the

generating QC word to show the equivalence of the frequency structure. This is supported by explicit

pattern recognition within the function which recovers segments of the abstract word.

What is really happening in the limit of ρ→ 0 is one of the hopping parameters (tB) is being turned off.

This means the system goes from a single connected chain for ρ > 0 to a system of small disconnected

chains at ρ = 0. The precise pattern of this disconnection is of course defined by the generating sequence
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Figure 14: Depicts the dimerised model when ρ → 0 for the GQC system L = 10. The blue arrows
represent tB = 0 resulting in isolated sites and two kinds of connected sites; double-sites and single sites.

Figure 15: The top row shows the spectral function near ω = 0 for the GQC with L = 89 for increasing
ρ from left to right. The bottom row is the corresponding Fourier transform (logged) for L = 610 to
resolve the peaks more clearly.

which is what orders the tA’s and tB ’s in the system. Fig. 15 shows the spectral function of the dimerised

GQC model. By assigning A (B) to a low (high) spectral weight the generating sequences can be

recovered. Furthermore, by identifying two larger scale patterns and assigning each of those A and B a

subset of the Fibonacci word can be recovered again.

w6
G = ABAABAB AABAABABAABAB A

Spectral pattern word = AABAABABAABAB

Fig. 16 shows the Fourier transform of the GQC spectral function and the Fibonacci word w13. The red

lines are markers of fractions of the golden ration modulo 1, they can clearly be seen to align with the

peaks of both the spectral function and the word transforms.

Notably, this analysis can be done for the SQC in exactly the same way, however, the TMQC and PQC

present difficulties. Since neither of their characteristic ratios ϕTM and ϕP allow for the same marker

alignment fitting process (because ϕTM is rational and ϕP is only approximate) the frequency peaks

cannot be confirmed against those of the generating sequence. The possibility of working backwards

and determining a characteristic value for either crystal from fitting to the peaks was explored with

inconclusive results.

Regarding the transition from dimerised QC to NC, Fig. 15 shows the spectral weights changing from

the full expression of the generating QC word to a periodic distribution of the state across all sites for
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(a) Fourier transform of the GQC spectral function with
L = 610

(b) Fourier transform of the Fibonacci word w13 which
has 610 elements.

Figure 16: Compares the Fourier transforms extracted from the spectral function of the GQC to the
generating word sequence. The red markers are the first ϕG/n mod1 for up to n = 10. Despite the
differences in magnitude between Figs. 16a and 16b, the peaks of boht functions align perfectly with
these markers.

increasing ρ → 1. Correspondingly the log10FFT also changes, the amplitude of the QC-aligned peaks

decreases in favour of a single frequency peak corresponding to the periodicity of the NC at ρ = 1. This

periodic distribution of spectral weight can be recognised from the simple Kitaev Hamiltonian, where the

superconducting term introduces an energy cost associated with creating (annihilating) two electrons at

neighbouring sites.
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C Supplementary Results

C.1 Confirming Majorana Bound States in Quasicrystals

Figure 17: SQC at 2∆ = ρ = 2.0. (b) L = 50 the eigenvalues and Majorana Polarisation M are plotted
over a range of µ/tA to show the phase transition. (a) and (c) show the spectral function and IPR (for
2 ≤ L ≤ 100) respectively for three values of µ/tA = 0.5, 2.5, 3.0.

39



Figure 18: TMQC at 2∆ = ρ = 2.0. (b) L = 50 the eigenvalues and Majorana Polarisation M are plotted
over a range of µ/tA to show the phase transition. (a) and (c) show the spectral function and IPR (for
2 ≤ L ≤ 100) respectively for three values of µ/tA = 0.5, 2.8, 3.5.

Figure 19: PQC at 2∆ = ρ = 3/2σ = 2.0. (b) L = 50 the eigenvalues and Majorana Polarisation M are
plotted over a range of µ/tA to show the phase transition. (a) and (c) show the spectral function and
IPR (for 2 ≤ L ≤ 100) respectively for three values of µ/tA = 0.5, 3.0, 4.5.
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C.2 Abundance of Majorana Bound State

(a) SQC

(b) TMQC

(c) PQC with σ = 2.0

Figure 20: Shows the remaining QC-types not included in the main body in Sec. 6.1 The Majorana
Polarisation is in colour as a function of 0 < µ/tA < 5.0 and 0 < ρ < 5.0 with L = 50 and ∆ = 0.1, 0.5, 1.0
for the left, middle and right columns respectively. For M = −1 the system has MBS, the red contour
line defines a departure from −1 of tolerance = 0.01.
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C.3 Protection of Majorana Bound States

(a) SQC

(b) TMQC

(c) PQC with σ = 2.0

Figure 21: Shows the MBS energy gap within the MBS phase in colour as a function of 0 <
µ/tA < 5.0 and 0 < ρ < 5.0 with L = 50 and ∆ = 0.5, 1.0 for the left and right columns
respectively. For M = −1 the system has MBS, the grey area indicates trivial phase.
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